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Abstract

This paper investigates methods for comparing two datasets produced by compre-
hensive two-dimensional gas chromatography (GCxGC). Chemical comparisons are
useful for process monitoring, sample classification or identification, correlative de-

terminations, and other important tasks. GCxGC is a powerful new technology for
chemical analysis, but methods for comparative visualization must address chal-

lenges posed by GCxGC data: inconsistency and complexity. The approach extends
conventional techniques for image comparison by utilizing specific characteristics

of GCxGC data and developing new methods for comparative visualization and
analysis. The paper describes techniques that register (or align) GCxGC datasets
to remove retention-time variations; normalize intensities to remove sample amount

variations; compute differences in local regions to remove slight misregistrations and
differences in peak shapes; employ color (hue), intensity, and saturation to simulta-

neously visualize differences and values; and use tools for masking, three-dimensional
visualization, and tabular presentation with controls for graphical highlights to sig-
nificantly improve comparative analysis of GCxGC datasets.
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1 Introduction

This paper investigates methods for comparing two datasets produced by com-
prehensive two-dimensional gas chromatography (GCxGC). Chemical compar-
isons are useful for process monitoring, sample classification or identification,
correlative determinations, and other important tasks. GCxGC [1] is a pow-
erful new chemical separation technology that provides significant advantages
over traditional GC: an order-of-magnitude increase in chemical separation
capacity, higher-dimensional chemical ordering, and a significant increase in
signal-to-noise ratio. GCxGC has important potential uses for comparative
chemical analysis, for example:

• comparing manufactured products with standards for quality control [2];
• monitoring actual or potential pollution sites for environmental changes [3];
• surveying crime scenes for chemical “fingerprints” [4]; and
• assaying classes of tissue samples for biomarker discovery [5].

However, the lack of software for GCxGC data and information processing
has been a significant impediment to the adoption of GCxGC for routine
applications [6].

This paper addresses two challenges for computer-based comparative visual-
ization and analysis of GCxGC datasets: data inconsistency and complexity.
First, GCxGC datasets exhibit inconsistencies in sample amounts, peak reten-
tion times, and peak shapes that are caused by uncontrolled chromatographic
variations and which are not related chemical differences in the samples. If
these incidental variations are not removed from the comparison, they can
confound and obscure actual chemical differences. Second, even if incidental
inconsistencies are removed, the chemical comparisons typically are complex
and difficult to visualize and report. In particular, GCxGC data may contain
thousands of peaks in complex multi-dimensional patterns related to chemi-
cal structure. Moreover, different comparative aspects, such as absolute dif-
ferences or relative differences, may be more or less important for different
chemicals and for different applications. Presenting complex comparisons of
complex data on a computer monitor (or printed page) is challenging.

The approach in this paper is to extend conventional techniques for image
comparison by utilizing specific characteristics of GCxGC data and develop-
ing new methods for comparative visualization and analysis. GCxGC data
can be represented, visualized, and processed as an image, e.g., a[m,n] where
a is the analyzed image with pixels indexed by first-column retention-time
m (increasing left-to-right) and second-column retention-time n (increasing
bottom-to-top). As in Fig. 1, each resolved compound produces a small two-
dimensional peak with pixel values (or intensities) that are larger than the
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Fig. 1. Reference image for comparison.

background values and can be visually distinguished through pseudo-color
mapping of the pixel values. Then, two GCxGC datasets can be compared by
simple techniques, such as side-by-side comparison or flicker (i.e., alternating)
between images [7], or by digital image processing methods, such as creating
a difference image (by subtraction) or addition image (by addition in different
colors) [8,9,10]. The pixel values also can be interpreted as elevation, generat-
ing a three dimensional surface which can be projected to two dimensions for
visualization.

The methods developed in Section 2 use GCxGC metadata, such as peak iden-
tifications and quantifications, to register (i.e., align) retention times between
two data sets (correcting for incidental variations of retention times) and to
normalize values between two data sets (correcting for incidental differences in
sample amounts). Section 3 develops a new colorized difference method to vi-
sually emphasize the remaining differences and a new fuzzy difference method
that can be used to suppress variations of peak shape in order to highlight
differences in chemical composition. Section 4 describes an interactive peak
comparison table that provides analysts with quantitative data and control
of peak-oriented graphical overlays and an interactive environment for three-
dimensional viewing that enables analysts to combine comparison methods
using elevation. Section 5 examines issues for further research and develop-
ment.
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2 Data Processing

This paper considers comparisons between two GCxGC images — the dataset
currently selected for analysis, referred to as the analyzed image, is compared
to another image, referred to as the reference image. Prior to comparison, each
image is processed separately to correct acquisition artifacts (e.g., background
removal [11]) and to detect, identify, and quantify chemical peaks [6]. Then,
two additional data processing steps are performed on the reference image to
remove incidental differences with the analyzed image. Section 2.1 describes
transformation of retention times to register identified peaks in the reference
image to corresponding peaks in the analyzed image. Section 2.2 describes
value (or intensity) scaling to normalize the response (i.e., total peak inten-
sity) for quantitative standard(s) in the reference image to the response for
standard(s) in the analyzed image. These two steps are critical for suppressing
incidental variations and emphasizing only real chemical differences.

2.1 Registration

Registration consists of two steps: (1) determine a transformation of the ref-
erence image to remove differences in retention times and (2) resample the
transformed reference image at the pixel locations of the analyzed image.

Various two-dimensional geometric transformations have been used for digital
image processing [12]. Affine transformation has been shown to effectively
remove retention variations related to chromatographic parameters [13]. The
transformed two-dimensional retention times (xt, yt) are computed from the
reference image retention times (xr, yr) as:
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where (a, b, c, d, e, f) are the parameters of affine transformation.

The parameters of affine transformation can be fit to minimize the mean-
square difference between the transformed retention times of a set of identified
peaks in the reference image and the retention times of the corresponding
peaks (i.e., the peaks with the same chemical identities) in the analyzed image.
Let B be a set of corresponding peaks bi, such that each peak is present and
uniquely identified in both the analyzed and reference images with retention
times (xa(bi), ya(bi)) and (xr(bi), yr(bi)), respectively. Then, the parameters of
the transformation are set to minimize:
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E =
1

|B|

∑

bi∈B

√

(xa(bi) − xt(bi))2 + (ya(bi) − yt(bi))2. (2)

Registration could be made more precise by using locally adaptive transfor-
mations rather than a global transformation, but locally adaptive registration
is more sensitive to errors.

One possible problem is that mismatched pairs of peaks (e.g., due to misiden-
tification) can reduce the accuracy of the transformation. To avoid this, after
the first transformation is computed from the set of all corresponding peaks,
the peaks for which the transformed retention times differ most from the
corresponding-peak retention times in the analyzed image are removed from
the peak set and the least-squares fit is recomputed on the remaining peaks.
Observations suggest that removing the 25% of peak pairs with the largest
differences effectively removes mismatched pairs. At least three non-colinear
points must be retained in the peak set to uniquely determine the optimal
affine transformation.

The reference image is then transformed, interpolated, and resampled at the
pixel locations of the analyzed image. Interpolating by convolution yields the
transformed image t:

t[xt, yt] =
∑

m′,n′

r[m′, n′]f(xr − m′, yr − n′), (3)

where r is the reference image and f is the interpolation function. Bilinear
interpolation is a simple, yet effective two-dimensional interpolator [14].

2.2 Normalization

For two runs (even from the same sample), slightly different sample amounts
are introduced and so produce different responses. Differences in GCxGC im-
ages due to variable sample amounts must be corrected so that they are not
mistaken as differences in concentrations.

GCxGC intensities are relatively linear with respect to amount, so normal-
ization can be implemented by multiplicative scaling. The scale factor is set
to equalize the response in the analyzed and reference images to one or more
quantitative standards which are taken to have the same concentrations in
both samples. For example, in analyzing chemical changes over time at the
site an oil spill, Reddy et al. [3] used hopane as a quantitative standard for
comparisons because it is relatively persistent over the observation period.

Given a set S of peaks bi for quantitative standards that are identified and
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quantified in both the analyzed and reference images, where Va(bi) is the
detected volume (total peak response) in the analyzed image and Vr(bi) is the
detected volume in the reference image, the scale factor is computed as:

F =

∑

bi∈S

Va(bi)

∑

bi∈S

Vr(bi)
. (4)

Just as for registration, mismatched pairs of peaks can reduce the accuracy of
normalization. The same method for avoiding registration errors can be used
to avoid normalization errors. The scale factor is first computed for all quan-
titative standards. Then, the scale factor is applied to the individual volumes
of the quantitative peaks in the reference image. The 25% of quantitative
standards with the greatest difference magnitude between the scaled reference
volume and the analyzed volume are removed from the set of quantitative
standards and the scale factor is recomputed.

The scale factor is applied to each pixel of the transformed reference image:

s[m,n] = F · t[m,n] (5)

The transformed and scaled reference image s now can be compared to the
analyzed image a.

3 Image-Based Comparison Methods

This section illustrates several image-based comparison methods using two
images from samples collected by Reddy et al. [3] at varying depths of the
intertidal marsh sediment affected by an oil spill. (The data presented here
to illustrate visualization is from preliminary runs. Subsequent runs, with im-
proved GCxGC settings, are in [3].) The data for the analyzed image was
acquired at a depth of 0–4cm and the data for the reference image was ac-
quired at a depth of 16–20cm. The subimage of the reference image used for
visualization is shown in Fig. 1. The n-alkanes from C22 form a regular pattern
along the bottom of the image and more polar natural (i.e., not introduced
by the oil spill) compounds appear in the top half of the image. The refer-
ence image was registered to the analyzed image using a peak set containing
several n-alkanes, the solvent peak, and a well-separated peak among the nat-
ural polar compounds. The reference image was normalized to the analyzed
image using a peak set of n-alkanes. This creates a set of peaks with nearly
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equal responses and (as will be seen) yields one set of natural compound peaks
which are more prominent in the reference image and another set of natural
compound peaks which are more prominent in the analyzed image.

3.1 Grayscale Difference

A popular method for comparing two images is to form a difference image by
subtracting the individual pixel values of one image from the corresponding
pixel values of the other image [8]. The comparison techniques developed in
this paper extend the difference image method.

In these comparisons, the reference image is subtracted from the analyzed
image, so a positive difference indicates that the analyzed image has a larger
pixel value and a negative difference indicates that the reference image has a
larger pixel value. The difference image can be displayed with a grayscale so
that medium gray represents zero difference, brighter values represent positive
differences, and darker values represent negative differences. The larger the
magnitude of the difference, the closer the displayed pixel is to white or black.
A logarithmic scale can be used to better highlight differences with smaller
magnitudes, but the same scale factor is used for both positive and negative
values. An example grayscale difference image is shown in Fig. 2. The cluster
of peaks in the upper-left are mostly dark, indicating the reference image has
greater intensity; the cluster of peaks in the upper-right are mostly bright,
indicating that the analyzed image has greater intensity; and the n-alkane
peaks along the bottom have both bright and dark, so the relative intensities
are not clear.

The grayscale difference method does an adequate job of showing the differ-

Fig. 2. Grayscale difference image.
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ences between the two images, but the relative context of those differences
is lost because the magnitude of the original pixel values is not represented
in the output image (only the difference). Another problem is indicated by
the adjacent bright and dark areas (especially for the n-alkane peaks). These
adjacent areas with opposite colors are due to slight misregistration or slight
peak shape differences.

3.2 Colorized Difference

In order to make the differences between the analyzed and reference images
more apparent and to retain some context for those differences, the traditional
grayscale difference method is modified to color code the differences and in-
corporate the original image pixel intensities. First, the difference image is
computed, just as it is for the grayscale difference method. Then, for display,
the difference image is converted into a 24-bit color image (three separate
bands of 8-bit integers). The color is computed in Hue-Intensity-Saturation
(HIS) space [15]. The hue component of each pixel is set to pure green if the
analyzed pixel value is larger or pure red if the reference pixel value is larger.
The intensity component of each pixel is the maximum of the original analyzed
and reference pixel values, scaled to fit into the 0–1.0 range. The saturation
component of each pixel is the magnitude of the difference value, scaled to
fit into the 0–1.0 range. After the hue, intensity, and saturation components
are calculated for each pixel, they are converted to the RGB color space and
stored in a 24-bit image.

An example colorized difference image is show in Fig. 3. The resulting color
image shows brighter pixels (larger intensity) where either of the original im-
ages have larger values and darker pixels (smaller intensity) where both of

Fig. 3. Colorized difference image.
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the original images have smaller values, thereby retaining context for the dif-
ferences that is lacking in the grayscale difference method. Pixels that have
approximately equal values in both original images appear grayish (smaller
saturation), whereas pixels for which there is a large difference have bolder
colors (larger saturation). This allows the user to see simultaneously peak
heights and peak differences. The problem of peaks with adjacent positive
and negative values still is evident.

3.3 Fuzzy Difference

In practice, differences between analyzed and reference images may be caused
by slight misregistration or slightly different peak shapes. It is desirable to
suppress these differences so that differences in chemical concentrations are
seen more clearly. These differences can be reduced by a new fuzzy difference

comparison. Rather than comparing pixels one-by-one, the fuzzy difference
method compares each pixel value in one image with the values in a small
neighborhood of the other image.

To compute the fuzzy difference between the two images, the user specifies the
size of a small, rectangular window which defines a neighborhood around each
pixel. The difference value at each pixel in the output image is computed using
a three-step process. The first two steps compute two intermediate difference
images — one comparing pixels in the analyzed image with neighborhoods
in the reference image and one comparing pixels in the reference image with
neighborhoods in the analyzed image. First, for each pixel, the difference is
computed between that pixel value in the analyzed image and the minimum
and maximum values found in the neighborhood window of the reference im-
age. That is, for each pixel location [m,n], analyzed pixel value a[m,n], trans-
formed and scaled reference pixel value s[m,n], and window ws{[m,n]}, the
difference pixel value da[m,n] is:

smax[m,n] = max[m′,n′]∈ws{[m,n]}(s[m
′, n′])

smin[m,n] = min[m′,n′]∈ws{[m,n]}(s[m
′, n′])

if a[m,n] < smin[m,n], then da[m,n] = a[m,n] − smin[m,n]
else if a[m,n] > smax[m,n], then da[m,n] = a[m,n] − smax[m,n]
else da[m,n] = 0

A difference is recorded only if the analyzed pixel value is either larger or
smaller than all of the reference pixel values in the surrounding window. This
allows the fuzzy difference algorithm to compensate for misaligned or differ-
ently shaped peaks while still showing differences in peak heights. The neigh-
borhood window size should be set no larger than one peak width in each
dimension so that pixel neighborhoods do not overlap multiple peaks. Second,
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Fig. 4. Grayscale fuzzy difference image.

the same intermediate difference algorithm is then repeated, with the analyzed
and reference images swapping roles.

In the third step, the pixel values in the final fuzzy difference image are deter-
mined by whichever intermediate difference image has the largest magnitude.
If the image that used the reference pixel as the center of each window is se-
lected, its pixel value is negated in order to retain the same positive/negative
relationship as the traditional difference image.

The fuzzy difference image can be converted to an 8-bit integer image for dis-
play, using the same method employed for the traditional grayscale difference
comparison method detailed in Section 3.1. An example fuzzy difference image
is shown in Fig. 4. In this image, it is clear that most of the n-alkane peaks
(along the bottom of the image) have nearly equal intensity in both images.
However, the grayscale shows only the difference, so it is not apparent that
the n-alkane peaks are large in value as well as similar in intensity.

The fuzzy difference image also can be displayed with the colorized differ-
ence method described in Section 3.2. An example of the colorized fuzzy
difference image is shown in Fig. 5. The colorized fuzzy difference image re-
moves many spurious differences by compensating for misaligned or differently
shaped peaks and provides additional context for the difference values. The
colorized fuzzy difference algorithm effectively highlights the most interesting
differences, even where peaks are slightly misaligned or differently shaped. It
is also clear that the n-alkane peaks are large in magnitude.
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Fig. 5. Colorized fuzzy difference image.

4 Tools for Comparative Analysis

Once comparison images have been generated for any of the image-based meth-
ods, additional tools can enhance the user’s understanding of the data.

4.1 Masking

The comparison process attempts to highlight interesting differences and sup-
press other differences. Users may want to mask (block) certain areas of an
image so that comparisons are displayed only for a particular region(s) of the
image. This is especially important if the scale of uninteresting differences is
much larger than differences of interest. Masking tools allow users to delineate
geometric regions or designate peak subsets to be excluded from comparison.
Pixels in masked areas are set to a null value appropriate for the currently
selected comparison method (e.g., gray for grayscale difference and black for
colorized difference).

4.2 Tabular Data

Tabular comparisons can provide quantitative information that cannot be
communicated in image-based comparisons. A comparative table provides im-
portant statistical data for each pair of peaks that are uniquely identified in
both the analyzed and reference image, such as volume (i.e., total response),
area (i.e., number of pixels), peak retention times, and value at the peak pixel.
For each feature, the values for the analyzed and reference image are listed
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Fig. 6. Tabular and image views with selected peaks.

side-by-side in the table, along with the differences (both absolute and per-
centage). To aid in analysis, the table rows may be sorted on any feature for
either image or on any difference. The contents of the table may be saved to a
file formatted as ASCII comma-separated values (CSV) for later importation
into spreadsheet, database, or word-processing applications.

Visual comparisons and tabular comparisons each have advantages, so it is
useful to navigate between the two views. If one or more peaks in the table
are selected (with the mouse), those rows are graphically highlighted in the
image by outlines drawn on the comparison image. This allows the user to
easily locate peaks of interest, for example, the peaks with the largest volume
difference or the peaks with the largest percent difference. Fig. 6 illustrates
a tabular view with selected peaks and corresponding image with graphical
highlights.

4.3 Three-Dimensional Visualization

GCxGC image data can be visualized as an elevation map, with peaks ap-
pearing as mountains. In this view, value is shown as elevation, which which
allows colorization to be used for other aspects of the data. For the elevation
map, the user may select one of four different images: the original analyzed
image, the transformed and scaled reference image, the difference image, or
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Fig. 7. Three-dimensional rendering of a colorized fuzzy difference image draped
over a maximum value elevation map.

an image with each pixel set to the larger of either the analyzed or reference
image pixel. Masked areas or peaks are set to zero elevation. The color over-
lay that is draped over the surface of the elevation map can be set by the
grayscale difference, colorized difference, or other difference (e.g., percentage
difference). The ability to drape any comparison image over different eleva-
tion maps provides great versatility in analyzing the data. It also allows even
the grayscale difference comparisons (traditional or fuzzy) to be viewed in the
context of the original pixel data — something that is not possible using only
a two-dimensional image. The user can then view the data from various dis-
tances or viewing angles and can locate the viewer’s position anywhere in or
around the data. A sample three-dimensional view is shown in Fig. 7.

5 Conclusion

This paper develops new methods for comparing datasets produced by GCxGC.
Methods for registration and scaling remove incidental variations in retention
times and sample amounts based on GCxGC peak metadata. A colorized
difference method simultaneously shows pixel differences and pixel values. A
fuzzy difference method removes incidental variations in peak shapes and peak
alignments based on values in a local neighborhood. Tools for masking, tab-
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ular metadata, and three-dimensional visualization significantly improve in-
teractive analyses. Ongoing work is developing new methods for model-based
GCxGC analyses and comparisons.
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