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Abstract

This paper describes a method for cloud cover assessment using computer-
based analysis of multi-band Landsat images. The objective is to accu-
rately determine the percentage of cloud cover in an efficient manner. The
“correct” value is determined by an expert’s visual assessment. Accept-
able error rates are ±10% from the visually-determined coverage.

This research improves upon an existing algorithm developed for use
by the EROS Data Center several years ago. The existing algorithm
uses threshold values in bands 3, 5, and 6 (red, middle infrared, and
thermal, respectively) based on the expected frequency response for clouds
in each band. While this algorithm is reasonably fast, the accuracy is often
unsatisfactory.

The dataset used in developing the new method contained 329 sub-
sampled, 7-band Landsat browse images with wide geographic coverage
and a variety of cloud types. This dataset, provided by the EROS Data
Center, also specifies the visual cloud cover assessment and the cloud cover
assessment using the current automated algorithm. Mask images, sepa-
rating cloud and non-cloud pixels, were developed for a subset of these
images.
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The new approach is statistically based, developed from a multi-dimensional
histogram analysis of a training subset. Images from a disjoint test set
were then classified. Initial results are significantly more accurate than
the existing automated algorithm.

Key words: remote sensing, image analysis, automated cloud cover
assessment, multi-spectral analysis, environmental sensing.

1 INTRODUCTION

Since 1972, NASA has been acquiring image data from its Landsat satellites. In
order to determine the usefulness of the images, each one must be assessed to
determine its percentage of cloud cover. Since cloud cover affects the accuracy
of global weather analysis, and since an image with a high percentage of cloud
cover is often useless to organizations which purchase these images, an accurate
assessment is crucial. Since the current acquisition rate is over 3600 images
per day (248 images per orbit × 233 orbits to cover the entire earth / 16 days
to cover the entire earth), numerous attempts have been made to automate
this process by training computers to accurately and consistently determine the
cloud coverage of a scene.
The automated algorithm currently used, developed in 1987, uses a threshold-
based approach, which has some inherent flaws. This research proposes a statis-
tical pattern matching approach known as supervised classification. Supervised
classification uses a training set with known correct answers to determine typ-
ical features that describe the desired pattern (in this case, clouds), and then
uses this information to classify a disjoint test set for which correct answers are
not known a priori.

2 THE DATASET

The dataset used in developing the new method contained 329 subsampled, 7-
band Landsat browse images provided by the EROS Data Center (EDC). The
subsampled browse images were approximately 380 pixels square with a pixel
spacing of approximately 480 meters. The images were acquired primarily over
Eastern Europe, the Middle East, Africa, South America, and North America,
and spanned latitudes from 72 degrees north (northern Alaska and Russia) to
32 degrees south (South Africa). Virtually every major surface and cloud type
was represented. All images in the dataset were daytime scenes. This dataset
also specifies the visual cloud cover assessment and the cloud cover assessment
using the current automated algorithm. Mask images, designating cloud and
non-cloud pixels, were developed for 210 of the 329 images.
The image pixels measure the radiance of the scene, and are scaled into the
0–255 range. It was initially thought that reflectance, which can be computed
given the radiance value and the sun elevation angle at each point, might be a
better measurement to work with than radiance. However, it was determined
that the errors between various algorithmic assessments and the “correct” visual
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Value Percentage Value Percentage
0 = 0–4% 5 = 45–54%
1 = 5–14% 6 = 55–64%
2 = 15–24% 7 = 65–74%
3 = 25–34% 8 = 75–84%
4 = 35–44% 9 = 85–100%

Table 1: Mapping of cloud cover assessment values to coverage percentages

assessment were uncorrelated with the sun elevation angle, indicating that this
was not the case. Just to be sure, the images were converted from radiance to
reflectance prior to processing and the cloud cover assessment results were com-
pared to those using unconverted radiance values. The results using reflectance
were worse than those using radiance, so the original radiance values were used
in all subsequent research.
The cloud cover assessment values used by EDC are single-digit values ranging
from 0–9. Table 1 gives the corresponding coverage percentages. The visual
assessments, which were used as a baseline for judging errors in the automated
algorithms, were only available as the single-digit values, so all automated re-
sults were also converted from percentages into these values before the error
calculations. All results and statistics given in this paper are in terms of these
values, not percentages.

3 THE CURRENT ACCA ALGORITHM

This research improves upon an existing algorithm developed for use by EDC
several years ago. The existing Automated Cloud Cover Assessment (ACCA)
algorithm uses threshold values in bands 3, 5, and 6 (red, middle infrared,
and thermal, respectively) based on the known frequency response for clouds
in each band. While this algorithm is reasonably fast, the accuracy is often
unsatisfactory.
The current ACCA algorithm processes each pixel sequentially as follows:

1. Each pixel is first thresholded in TM bands three and six to determine
whether it is bright enough and cold enough to be either a cloud or
snow/ice.

2. If the pixel passes the first thresholds, it is next thresholded in band five
to determine if it is bright enough to be cloud, since snow/ice has a lower
reflectance than most clouds at the 1700nm wavelength.

3. If it fails that test, it is again thresholded in bands five and three to
distinguish between snow/ice and ice cloud.

Figure 1 demonstrates two of the problems with the current threshold-based
ACCA algorithm. The coverage assessment for each image is given in the cap-

3



tion. The images on the left are of a scene taken over the Amazon basin. Most
of the clouds here are too warm to pass the thermal (band 6) threshold, and are
therefore not marked as clouds. The images on the right are of a scene near Mt.
McKinley in Alaska. While there are no clouds in this image, much of the snow
on the higher peaks has a similar frequency response, and is therefore classified
as clouds. Fortunately, in this case, few enough pixels were miss-classified that
the overall coverage assessment was not adversely affected.
For the images in the available dataset, the current ACCA algorithm gave results
which were, on average, 1.184 units less than the visual assessment. However,
the difference between the two assessments had a root-mean-squared (RMS)
error of 1.875. At the extremes, the ACCA assessment was as much as 9 units
below the visual assessment or 3 units above. This indicates a large number of
images with errors well outside the acceptable RMS error range of ±1.0.
The distribution of assessment values for ACCA and the visual assessment are
graphed in Figure 2. Of the graphed images, 4% had a higher automated than
visual assessment, 40% had the same automated and visual assessment, and
56% had a lower automated than visual assessment. Of that 56%, the mean
error was -1.813. On a Sun SPARCserver 670MP, this algorithm ran in about
0.1 seconds per image.

4 THE NEW STATISTICAL APPROACH

4.1 The basic algorithm

The algorithm proposed in this paper uses a supervised classification technique.
First, a training set of 61 images was selected from the 329 available images.
The training set was built by visually inspecting the images and making sure
that all major surface and cloud types were well-represented and that the mask’s
assessment was similar to the visual assessment.
An n-dimensional histogram was then computed from the training set as follows:
For each pixel, if the mask image indicated that the pixel was a cloud, the
histogram value for that pixel’s n-dimensional value was incremented. If the
mask image indicated that the pixel was not a cloud, the appropriate histogram
value was decremented. In the resulting histogram, regions of n-tuples with
positive values indicated n-tuples that usually represented clouds, while ranges
of n-tuples with non-positive values indicated n-tuples that usually did not
correspond to clouds.
Using this histogram as the definition of what a cloud “looks like,” the remaining
268 images (the “test set”) were then classified. The classification algorithm
simply takes each n-dimensional pixel value from an image and does a lookup
into the histogram. If the lookup yields a positive value, the pixel is marked as
a cloud; otherwise it is left unmarked. Histogram lookups yielding a value of
zero were arbitrarily chosen to indicate a non-cloud pixel.
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Warm Clouds Ice and Snow

Actual Landsat image
(visual assessment = 8)

Actual Landsat image
(visual assessment = 0)

Cloud mask from current ACCA
algorithm (assessment = 0)

Cloud mask from current ACCA
algorithm (assessment = 0)

Cloud mask from new automated
algorithm (assessment = 4)

Cloud mask from new automated
algorithm (assessment = 0)

Figure 1: Problems with current ACCA algorithm
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Figure 2: ACCA vs. visual assessment

4.2 Internal data storage

While the basic algorithm remained unchanged, numerous implementation de-
tails were modified in order to achieve good results. The most important of
these related to the size of the histogram. Since each pixel value has a range of
0–255, a 7-dimensional histogram could potentially contain 7.2×1016 entries. If
each entry was implemented as a 16-bit integer, a full histogram would require
144,000 terrabytes of storage space. Clearly, this is impractical.
The first approach used to lessen the storage requirement was to aggregate the
256 possible pixel values for each dimension (band) into larger groups. Each
time the number of possible pixel values is cut in half, the storage requirement
is divided by 2n (n is the number of bands), or 128 for a 7-band histogram.
Still, in order to bring the histogram down to a manageable size (approximately
4MB), each dimension must be aggregated into 8 buckets, each encompassing
32 values in the original 0–255 range.
Quantizing the pixel values this way also has the side effect of increasing the
likelihood of a histogram lookup “hit” (finding a non-zero value) when running
the algorithm on the test set. This is important when you consider the number
of possible n-tuples that can fall within ±1 value from a given n-tuple, and
hence the probability of a “miss” if the training set did not contain enough
unique pixel n-tuples to fully populate the cloudy regions of the histogram. As
implemented, using a “quantization factor” of q divides the range for each image
pixel value by 2q, creating 28−q buckets of 2q values each. When using an n-
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Band RMS when missing
6 (thermal) 1.802
1 (blue) 1.600
5 (middle-IR) 1.536
3 (red) 1.514
4 (near-IR) 1.485
2 (green) 1.462
7 (middle-IR) 1.433

Table 2: Resulting RMS error when bands are omitted

bands histogram, a quantization factor of q will reduce the size of the histogram
by a factor of 2nq.
Statistics are given in this paper for several variations of the new supervised
classification method. All variations use a quantization factor of 5, which par-
titions the 256 possible pixel values into 8 blocks of 32 values each. This not
only keeps the storage requirements manageable, but also gives slightly better
results than do quantization factors of 4 or 6.
Another optimization that reduces the size of the histogram is based on the fact
that a histogram resulting from the training stage is typically extremely sparse.
Even when the pixel values are quantized by a factor of 5, the histogram for a
50-image training set is still only about 1% dense. The storage requirement of
the histogram can thus be further reduced by storing the histogram as a linked
list rather than an array. This reduces the size of most histograms by a factor of
13, and also gives the ability to change the dimensionality (number of included
bands) in the histogram with minimal code changes.

4.3 Omitting bands

In order to both reduce the amount of storage space required to store the his-
togram and reduce the processing time of the algorithm, one or more bands
may be ignored. To determine which bands had the least impact on the final
results, the new algorithm was run seven times, omitting a different band each
time. The RMS differences between the new results and the visual assessment
are listed in Table 2. It can be seen from the table that bands 7, 2, and 4, in
that order, are the best candidates for omission.
By testing various combinations of bands, it was found that omitting both bands
7 and 2 from consideration produced the best results. The initial supervised
approach, using all 7 Landsat bands as input, differed from the visual assessment
by a mean of -1.029, an RMS of 1.613, and a range of -5 to +2. This 7-band
configuration ran in about 1.9 seconds per image. When both bands 2 and 7
were omitted, the mean became -0.943, the RMS dropped to 1.547, and the
range increased slightly to -5 to +3. This smaller, 5-band configuration took
about 1.3 seconds per image. Since this trend was consistent throughout most
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of the test variations, the majority of the tests include only bands 1, 3, 4, 5,
and 6, ignoring bands 2 and 7.

4.4 Windowing

Although the results obtained with the new algorithm as described thus far were
good, they were still often closer to the results of the original ACCA algorithm
than to the visual assessment. Visual analysis of the images indicated that most
of the images that produced high errors for both the ACCA algorithm and this
new approach contained a large number of “popcorn” clouds, or small puffs of
clouds scattered throughout an area. The mean error of the ACCA algorithm for
images containing primarily popcorn clouds was -2.41, compared with -0.93 for
all other cloud types. An example of popcorn clouds is given in the upper-right
image in Figure 3.
It appears as though the visual assessment is classifying the entire popcorn-
covered area as “cloudy,” when in reality, only 50–60% of the individual pixels
may represent clouds. This is probably a reasonable action on the part of the
visual assessor, as most people purchasing satellite images require large sections
of cloud-free pixels, not tiny strips intertwined with small clouds. However,
this means that any purely pixel-based algorithm will never match the visual
assessment, even if it can recognize individual cloud pixels 100% of the time.
The solution to this is to take into account larger spatial areas, or “windows,”
when determining cloud cover.
The windowing technique uses an N × N window centered around the pixel
whose value is being computed. The cloud/non-cloud status of each pixel in the
window is determined individually. The cloud cover percentage for the entire
window is then compared to a threshold value. If the percentage of cloud cover
in the window is greater than the threshold, then the final status of the pixel
in the center of the window is set to “cloud.” If the window’s coverage is below
the threshold, the center pixel is set to “non-cloud.” This windowing algorithm
has the effect of converting the staccato, single-pixel resolution of the resulting
cloud masks into more blob-shaped areas.
This windowing modification can be applied to both the current ACCA algo-
rithm and the new statistical pattern matching approach, and obtains significant
improvements for each.
Both algorithms were tested using window sizes ranging from 1× 1 to 25× 25.
Window coverage thresholds ranged from 1% to 50%. The RMS errors for all
tested combinations of window size and threshold are listed in Table 3. In each
table, the combination with the lowest RMS error is surrounded with a box.
It can be seen in Table 3 that the best results for both algorithms occurred
when a 5 × 5 window was used. Since the goal of windowing is to smooth out
geographical features in the image, it is likely that the appropriate window size
is a function of the surface area (about 2.4 km square for a 5×5 window) rather
than the pixel area.
The current ACCA algorithm achieved the best results with a threshold of just
5%. This threshold seems quite low, and may only be required to compensate for
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Current ACCA Algorithm:
Window Threshold

Size 1% 2% 5% 10% 20% 30% 40% 50%
1× 1 1.875 1.875 1.875 1.875 1.875 1.875 1.875 1.875
3× 3 1.517 1.517 1.517 1.517 1.619 1.708 1.844 1.921
5× 5 1.558 1.558 1.487 1.551 1.604 1.700 1.836 1.955
7× 7 1.611 1.611 1.544 1.551 1.602 1.698 1.878 1.983

11× 11 1.719 1.672 1.602 1.571 1.595 1.713 1.882 2.052
17× 17 1.860 1.782 1.658 1.577 1.579 1.709 1.893 2.068
25× 25 1.978 1.874 1.748 1.604 1.606 1.710 1.906 2.108

New Statistical Approach:
Window Threshold

Size 10% 15% 20% 30% 40% 50%
1× 1 1.547 1.547 1.547 1.547 1.547 1.547
3× 3 1.148 1.108 1.121 1.268 1.475 1.641
5× 5 1.141 1.119 1.089 1.298 1.489 1.735
7× 7 1.271 1.137 1.112 1.306 1.547 1.764

11× 11 1.296 1.174 1.137 1.321 1.598 1.779
17× 17 1.370 1.200 1.158 1.338 1.602 1.839
25× 25 1.430 1.222 1.189 1.355 1.613 1.863

Table 3: RMS errors for ACCA and statistical windowing algorithms

the (sometimes excessive) underestimation of the correct number of individual
cloud pixels caused by the threshold-based approach. For example, see ”Warm
Clouds” in Figure 1. The statistical approach obtained the best results with a
threshold of 20%. (Its RMS error of 1.089 is the lowest error produced by this
research thus far.) It can be seen that the farther the non-windowed results are
below the correct values, the lower the threshold must be in order to correct the
results.
The results of these windowing modifications to both algorithms is demonstrated
in Figure 3. The actual satellite image is shown in the upper right. This im-
age, taken in June over western Russia, demonstrates a scene almost completely
obscured by popcorn clouds. The visual assessment of this image was 8, indi-
cating that approximately 80% of the image was cloudy. The manually-created
mask image in the upper left indicates that only 30% of the individual pixels
were clouds, yielding an assessment value of 3. The lower four images are the
computed cloud masks for both ACCA and the statistical algorithms, with and
without windowing. The assessment value for each image is given. It can be
seen from the resulting cloud masks that windowing fills in the more dense areas
of clouds and clears out the more sparse areas, giving results which are much
closer to the visual assessment.
Unfortunately, the windowing modification does have its drawbacks. The sta-
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tistical approach required about 23 seconds per image to run with a 25 × 25
window, compared to 1.3 seconds without windowing. The 5× 5 window which
yielded the best results took about 2.7 seconds per image. The current ACCA
algorithm with the windowing modifications took about 2.0 seconds per image
with a 25 × 25 window and 0.3 seconds for a 5 × 5 window, compared to 0.1
seconds without windowing.

5 CONCLUDING REMARKS

If we assume, for the sake of statistical comparison between the current ACCA
algorithm and this research, that the experts’ visual assessment of each image
is correct, then the cloud cover assessment results from the new algorithm are
significantly better than those of the ACCA algorithm, achieving an RMS error
40% smaller than ACCA (1.089 vs. 1.875). Still, there is room for improvement.
Future work may include reworking the quantization approach to increase the
histogram resolution in more dense areas of the histogram. Another approach
that may be attempted is the use of unsupervised classification via the fuzzy
c-means algorithm or neural networks.

10



(L) Manually-created cloud mask provided by EDC (assessment = 3)
(R) Actual Landsat image (visual assessment = 8)

(L) Cloud mask from the current ACCA automated algorithm (assessment=4)
(R) With 5× 5 window and 5% threshold (assessment = 8)

(L) Cloud mask from new automated algorithm (assessment = 4)
(R) With 5× 5 window and 20% threshold (assessment = 7)

Figure 3: The advantages of windowing
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